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Abstract. The dielectric properties of thin-film ferroelectric structures are studied. The effects
of compensation charges at the interfaces between layers (e.g. between a ferroelectric and a non-
ferroelectric layer) are considered; on the assumption that these charges are mobile within the
interface region, we show that they control the domain boundaries between regions of opposite
ferroelectric polarization and are thus responsible for the way in which polarization switching
takes place. Using a Landau–Devonshire model for the ferroelectric, we demonstrate hysteresis
curves (stored charge against applied voltage) in ferroelectric capacitor structures that explain
the long-standing problem of why the switching of polarization occurs over a finite voltage
range. In particular, the model shows how non-switching ferroelectric layers can be stabilized
in thin-film capacitor structures, and why this produces hysteresis curves of the form that is
observed experimentally.

1. Introduction

Structures comprising layers of ferroelectrics and paraelectrics continue to attract increasing
interest because of their potential device applications. The commonly observed property of
such structures is the hysteresis loop (variation of stored chargeQ with applied voltageV )
obtained in a capacitor geometry with metal electrodes on the surfaces. Curiously, although
ferroelectrics have been studied for many years, the basic shape of the hysteresis loop
has never to our knowledge been explained in principle. In the region where polarization
reversal takes place, experimental measurements always show a continuous variation of
Q with V , whereas it is always assumed that theoretical models predict a discontinuous
variation when the polarization reverses. The absence experimentally of a discontinuous
change is therefore normally attributed to imperfections (e.g. domain structures) within the
sample.

It is the purpose of this paper to show that one can straightforwardly model the effect of
domains in a ferroelectric (FE) capacitor. The hysteresis loop for FE structures will always
be of the continuous form described above so long as the structure contains non-switching
layers, which may either be FE layers formed during cycling through the hysteresis loop
or paraelectric (PE—materials of high linear dielectric susceptibility) layers grown into the
structure. The key feature of the polarization reversal process is the behaviour of the space
charge—compensation charge—that exists at the surfaces between the different FE and
PE layers. The compensation charge is formed in response to what is usually called the
depolarization field, i.e. the electric field produced by the normal component of polarization
at an interface. We assume that the compensation charges are mobile within the interface
region, but do not migrate between interfaces (except perhaps on a long time scale). This
enables domains of opposite polarization to co-exist in the FE regions, with continuity of the
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electrostatic fields. When polarization reversal occurs in response to change in the external
voltageV applied to the structure, the domain boundaries change so as to favour one or
other polarization orientation; the motion of the domain boundaries must be associated with
motion of the compensation charges within the interfaces. On this basis, and using the
Landau–Devonshire theory for a ferroelectric, we obtain calculated hysteresis behaviour
which is entirely characteristic of that observed experimentally.

The outline of this paper is as follows. In section 2, we discuss the fields and
compensation charges in a simple FE/PE capacitor structure so as to clarify the role of
compensation charge in determining the macroscopic electrostatic properties. Throughout,
we assume that the spontaneous dipole moments are polarized normal to the plane of the film.
The FE layer is described using the Landau–Devonshire model for a ferroelectric (section 3),
and section 4 describes the polarization reversal process and the form of the hysteresis loop
when the FE layer consists of both positively and negatively polarized domains. The most
striking features of the analysis, in comparison with a bulk FE structure, are (i) that the
hysteresis loops show polarization reversal over a finite range ofV , (ii) the loop can be
asymmetric with respect toQ and V and (iii) the susceptibility does not diverge at the
transition temperature. Although there is not a lot of experimental measurement as yet on
actual layered ferroelectrics, there is evidence that all these features are usually observed
in measurements on layered ferroelectric structure. However, there is ample evidence that
most if not all structures which are grown as a single FE layer actually form a so-called
non-switching layer close to the electrodes. In section 5 we replace the PE layer by non-
switching FE layers at each electrode (the non-switching characteristics can be achieved by
suitable space charges at the interfaces). The resulting hysteresis curves closely resemble
those measured experimentally, which are thus explained here for the first time using a
first-principles model.

The work in this paper resembles to some extent the approach of Milleret al (1990,
1991), who have measured the behaviour of thin-film ferroelectric capacitors, and modelled
this behaviour, including the effects of space charge at the interfaces. Zurcheret al (1995)
have also performed model calculations appropriate for SBT capacitors; they model a multi-
layer structure including interface charges by adjusting the charges and polarizations self-
consistently using a Gauss-loop technique. Tagantsevet al (1995) discuss the identification
of the non-switching layer. In order to model the hysteresis behaviour, these authors all use
an assumed empirical hysteresis loop for the ferroelectric material. We are able to derive
this type of hysteresis loop directly from first principles by a simple application of Landau
theory and the boundary conditions for the fields and charge in layered FE and FE/PE
structures.

2. Basic model of FE/PE structure

The basic structure that we will consider is shown in figure 1. Two planar layers 1 and 2,
thicknessesL1 andL2, are placed between the metallic plates of a parallel plate capacitor
structure, with applied voltageV0. Surface charge densitiesQ1 and−Q2 exist at the top
and bottom plates, andσc = Q2−Q1 at the interface. The fieldsDi , Ei andPi (i = 1, 2) in
the two media are assumed to be uniform, and directed along thez-axis normal to the layers
(with the downward direction in figure 1 taken as the positivez-direction). The assumption
of uniformity implies that the interface regions, in which the space charges exist and in
which the fields will not be uniform, are small in dimension compared to the dimensions
L1 andL2, and so we can for the present ignore the finite extent of the surface charge
distribution. The application of Landau theory to the description of surface polarization
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Figure 1. Basic two-layer structure: media 1 and 2 placed between the plates of a capacitor,
with charge densitiesQ1, σc and−Q2 at the three interfaces.

non-uniformity has been discussed, for example, by Tilley (1993), and size effects in this
context discussed by Wang and Smith (1995, 1996).

TheD-fields are related to the free charge densityρ by Gauss’ law:

∇ ·D = ρ. (2.1)

Since theD-fields are assumed to be uniform,ρ = 0. At an interface normal toD, D has
a discontinuity given by

1D = σ (2.2)

whereσ is the free charge surface density at the interface. Throughout this paper we use
the word ‘charge’ to refer only to real charges; we avoid the explicit use of bulk and surface
pseudo-chargesρp = −∇ · P andσp = −Pn associated with the polarizationP . We use
the term ‘compensation charge’ for the free space charge at an interface (sometimes this is
called ‘screening charge’ or ‘depolarization charge’).

In the structure in figure 1, the surface charge densities and the fields are related by

Di = Qi = ε0Ei + Pi (i = 1, 2). (2.3)

When the external voltageV0 is zero, equilibrium is attained only if there are no macroscopic
electric fields in the structure, and so the equilibrium conditions are

Ei = 0 Di = Qi = Pi. (2.4)

Note that if at least one of the media has a non-zero spontaneous ferroelectric polarization
Pi , equilibrium cannot be reached without the presence of compensation charges, which
presumably appear during the growth of the structure or during its cooling when the
ferroelectric moment develops. Most ferroelectrics are essentially insulators, so the
appearance of compensation charges (perhaps associated with deep traps) will normally
occur on a slow time scale (perhaps seconds or longer). The question then arises of how
these charges change whenV0 is charged. Clearly, so long as the time scale of changes
in V0 is short compared to the vertical movement of the free charges, the compensation
chargeσc within the interface layer will remain constant. This condition implies that if,
for example, the effective capacitance of the parallel plate structure is measured by varying
V0 and observing the changes in the chargeQ supplied by the voltage source, then the
capacitance effects should dominate over conductance effects. Thus, we assume that the
compensation charge is unable to move vertically (i.e. across the layers) in the structure;
on the other hand, we shall assume that the charges are mobile laterally within the charged
layer when we come to consider domains in the ferroelectric (section 4).
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Consider now the response of the system to changesδV0 in the applied potential,
measured as the changeδQ in charge densityQ supplied by the voltage source. For
convenience,V0 is converted to an effective average fieldE0 = V0/L, whereL = L1+L2.
The basic assumption is that the compensation charges are not mobile normal to the layers,
so σc remains constant over the time-scale of the measurement. Therefore the changeδD

in theD-field is the same throughout the structure, i.e.

δD = δD1 = δD2 = δQ = δQ1 = δQ2. (2.5)

The dielectric susceptibilities of the two media are defined as

εi(Ei) = ∂Di

ε0∂Ei
(2.6)

where the susceptibilityεi(Ei) is assumed to be expressible as a function of the fieldEi .
With δD uniform, it is clearly more appropriate to deal with the reciprocal susceptibilities.
The changes in theE-fields are given by

ε0δEi = εi(Ei)−1δD (2.7)

and the overall voltage change is

δV0 = LδE0 = L1δE1+ L2δE2. (2.8)

We can thus immediately obtain the effective medium result for the susceptibility of the
structure along the field axis (thez-axis):

ε−1
zz =

ε0δE0

δD
= f1

ε1(E1)
+ f2

ε2(E2)
(2.9)

wherefi = Li/L are the volume fractions of the two media, withf1 + f2 = 1. This type
of result is well known from the effective medium theory of superlattices. Note the initially
surprising feature ofεzz that, if one of the materials, 1 say, undergoes a second order phase
transition so thatε1 → ∞, thenεzz does not diverge at the transition. Physically, this is
because the layers act as capacitors in parallel, whose total capacitance is limited by the
smaller capacitance.

This approach can be extended to cover the application of finite fieldsE0. The
susceptibilitiesεi should be viewed as non-linear functions of the fieldEi , and all fields
can be viewed as functions of the independent variableQ. The defining equations are

dEi
dQ
= 1

εi(Ei)

dE0

dQ
= f1

dE1

dQ
+ f2

dE2

dQ
.

(2.10)

Hence, one can findE0 as a function ofQ, so long as the functionsε1(E1) and ε2(E2)

are known. In order emphasize the physics of this approach, we make the essentially
trivial point that the expressions above are those that would be obtained by considering the
equivalent circuit of figure 2, comprising two capacitors in parallel containing the media 1
and 2. The compensation chargeσc is simply the total chargeQ2 − Q1 trapped between
the capacitors, which will not change whatever the applied voltage, so long as conduction
through the media can be ignored.
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Figure 2. Equivalent circuit for figure 1.

3. Polarization in Landau-model FE/PE structure

We consider the polarization and susceptibility for a ferroelectric (FE)–paraelectric (PE)
layered structure consisting of a ferroelectric medium (FE, layer 1) and a paraelectric
medium (PE, layer 2). We use the Landau–Devonshire model description for the FE layer
(see, for example, the classic text of Lines and Glass, 1977), in which the Landau free
energy for a bulk FE of polarizationPF in an electric fieldEF is written

FF = 1
2AP

2
F + 1

4BP
4
F − EFPF (3.1)

where the equilibrium conditions are

∂FF

∂PF
= 0 i.e. EF = APF + BP 3

F (3.2)

and
∂FF

∂EF
= −PF . (3.3)

The parameterA varies with temperature asA = A0(T − T0), with T0 the bulk transition
temperature, andB > 0.

It is convenient to use normalized fieldseF andpF :

pF = PF/P0 eF = ε0EF/P0 with P0 =
√
A0T0/B. (3.4)

The equilibrium condition (3.2) becomes

pF (t + p2
F ) = eFχ0 (3.5)

whereχ0 = (A0T0ε0)
−1 and t = (T − T0)/T0 is the reduced temperature. The normalized

D-field is

dF = DF/P0 = eF + pF (3.6)

and the dielectric susceptibilities are

χF = ∂PF

ε0∂EF
= ∂pF

∂eF
= χo

t + 3p2
F

εF = ∂DF

ε0∂EF
= ∂dF

∂eF
= 1+ χF . (3.7)

For the PE layer, characterized by a linear polarization susceptibility

χP = ∂PP

ε0∂EP
(3.8)

the corresponding expressions are

eP = ε0EP/P0 pP = PP /P0 = epχP εP = 1+ χP . (3.9)



9146 S R P Smith

In the FE/PE structure of figure 1, the charges on the top and bottom plates,Q1 and−Q2,
can be written as

Q1 = σF +Q Q2 = σP +Q. (3.10)

Here,Q is the charge provided by the external voltage sourceV0, andσF andσP are defined
so thatQ can be taken as 0 whenV0 = 0. The fixed compensation charge between the
layers isσc = σP − σF . The internal electric fields are given by

Ei = (Di − Pi)/ε0 = (σi +Q− Pi)/ε0 (i = F or P) (3.11)

where the contribution−Pi/ε0 is the so-called depolarization field. In reduced units, with
q = Q/P0 andsi = σi/P0,

ei = q + si − pi. (3.12)

The overall effective macroscopic field in the structure is

e0 = ε0E0/P0 = fF eF + fP eP (3.13)

wherefF andfP are the fractions of the FE and PE layers (fF + fP = 1). In order that
q = 0 in the overall equilibrium situation in which there is no applied voltage and the fields
e0, eF andeP are all zero, the offset charge densitiessF andsP must be taken to be

sF = p0 sP = 0 (3.14)

wherep0 =
√−t is the solution of equation (3.5) for the equilibrium reduced polarization

in zero applied field.
The fields may be found by integration of equations (2.10), but it is easier in this model

simply to useeF as the independent variable and findq ande0 etc as functions ofeF .

4. Polarization reversal and hysteresis of the FE/PE structure

When the applied fieldE0 is large enough in magnitude, polarization reversal from a
negatively polarized to a positively polarized state, or vice versa, can take place. In order
to describe this reversal, we must include in the model the possibility of domains in the
Fe material. We assume that these domains are ‘vertical’ within the structure, i.e. that the
domain walls are parallel to the fields. We also assume that there is no energy associated
with a domain wall. To be sure, this assumption may not be appropriate, but domain wall
energy does not play a fundamental part in the behaviour of the system and it is the aim of
this paper to examine the basic questions and leave secondary complications aside. Under
these conditions, the structure is split into two domains, in which the Fe moments are
polarized down and up with polarizationsp+ andp−, and where the volume fractions are
f+ = f and f− = (1− f ) respectively. The revised FE/PE capacitor has the structure
shown in figure 3, with a fixed volume fractionfP of PE material (lower section) and
fractionfF = (1−fP ) of FE material (upper section). The top and bottom metal plates are
at potentialsV0 and 0 respectively. In thep± domain, the reduced surface charge densities
at the top plate, interface and bottom plates are(q± + s±),−s± and−q± respectively (the
overall charge on the structure is 0). Domain wall movement is simulated by allowing the
fraction f to change. The crucial assumption is that, whilst the compensation charge at
the interface is again incapable of moving vertically within the structure on the time-scale
of the measurement, it is capable of lateral transfer between the two domains. Thus, asf

changes, the total compensation charge densitys0 at the FE/PE interface, given by

s0 = f s+ + (1− f )s− (4.1)



Polarization switching in ferroelectrics 9147

Figure 3. FE/PE capacitor structure containing oppositely polarized domains. The lower section
comprises the PE, fractionfP , and the upper the FE, fractionfF = 1− fP . The left side is the
positively polarized FE domain, polarizationp+, fraction f , and the right side the negatively
polarized domainp− fraction 1− f . The surface charge densities at the interface and on the
upper and lower metal plates are as shown.

must remain constant (in the absence of conduction effects), though the individual
compensation chargess+ ands− in the two domains will change withf , keepings0 fixed,
in order to satisfy the boundary conditions on the fields.

The reduced fields in the four regions are:

FE+ dF+ = q+ + s+ eF = q+ + s+ − p+
FE− dF− = q− + s− eF = q− + s− − p−
PE+ dP+ = q+ eP = q+/χP
PE− dP− = q− eP = q−/χP . (4.2)

However, the boundary conditions on theE-fields require that theE-fields are the same in
the regions FE+ and FE− (eF ), and in the regions PE+ and PE− (eP ). Consequently, the
charge densitiesq+ andq− in the two domains must be the same:

q = q+ = q−. (4.3)

Furthermore, the differenceδs = s+ − s− is fixed by the polarization difference between
the two domains:

δs = s+ − s− = p+ − p− (4.4)

wherep+ andp− are the positive and negative solutions of the equation (3.5) determining
the polarization in the FE:

eF = p±(t + p2
±)/χ0. (4.5)

The important feature of equation (4.5) is the existence of a critical field

ec = 2(−t/3)3/2 (4.6)

such that, ifeF > ec there is nop− solution, and ifeF < −ec there is nop+ solution.
Consequently,

f = 1 if eF > ec and f = 0 if eF < −ec.
We can now consider the behaviour of the system as it is taken around a hysteresis loop
by varying the external fielde0 from negative to positive values and back again, with large
enough swings to cause complete polarization reversal. It is actually more convenient to
think of eF as the independent variable from which the other quantities, primarilyq ande0,
can be determined. The variation in volume fractionf of the FE+ domain can be obtained
by the following argument. SupposeeF increases towards+ec for a given value off ;
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whenec is reached, thep− solution becomes unstable, soeF must remain at the value+ec
whilst f increases. Whenf reaches the valuef = 1 the system takes up a singlep+
domain, andeF is now able to continue to increase aboveec. Similarly, wheneF decreases
towards−ec, at eF = −ec f must decrease to 0 beforeeF can go below−ec. Thus, in
this model,f changes only when the electric field in the FE region reaches its critical
valueseF = ±ec. Whilst f changes,eF remains constant, buts+ and s− change and so
do the externally accessible quantitiesq ande0. When|eF | > ec, the quantitiesp+ andp−
lose their separate identities since the cubic equation (4.5) has only one solution, and the
appropriate interface charge density becomes equal tos0. In the model developed here, we
assume that there is no movement of the domain boundary in the hysteresis loop whilst the
field eF in the switching layer is in the range−ec < eF < +ec. This assumption is valid
so long as the changes in the external voltage are fast on the time-scale of relaxation of the
domain boundaries. Of course, if for example the external voltage is removed, the system
may slowly relax to a state with no net polarization by movement of the domain walls, but
we do not consider the problem of the dynamics of the slow time-scale response here.

Assuming the total interface charges0 is fixed, s± are given by

s+ = s0+ (1− f )δs s− = s0+ f δs. (4.7)

The chargeq is found from

q = eF − (s± − p±) = eF − s0+ p+f + p−(1− f ). (4.8)

The field in the PE layer is

eP = q/χP (4.9)

and the overall applied fielde0 is

e0 = fF eF + fP eP . (4.10)

Numerical calculations (see below) are presented in terms of the renormalized overall field

e′ = e0χ0. (4.11)

Finally, we discuss the initial interface charges0. Under conditions of long-term equilibrium
with zero applied fielde0, we expect that there are no electric fields in the structure
(eF = eP = 0). This can come about either if the domain fractionf slowly changes
to a long-term equilibrium valuef0, but also ifs0 changes by vertical conduction of charge.
If eF = 0, the solutions of (4.5) arep± = ±p0 with p0 =

√−t . The origin ofq is arbitrary
to the extent that the model depends only on the sum (q + s0), and we defineq so that
q = 0 when the internal fields are zero. Thus, from (4.8), the domain fractionf must have
the value

f0 = s0+ p0

2p0
(4.12)

under the long-term equilibrium conditions. Sincef0 must lie in the range 06 f0 6 1, s0
must lie in the range

−p0 < s0 < p0. (4.13)

The symmetric situation, in which the sample can initially be found with equal proportions
of positively and negatively polarized domains, corresponds tof0 = 1

2, for which s0 = 0.
If s0 is non-zero, the hysteresis curves are asymmetric, which is sometimes found to be the
case in practice. The calculations below uses0 = 0.

In order to demonstrate typical results using this model, we use numerical values
for the FE medium that are loosely appropriate in BaTiO3. The important characteristic



Polarization switching in ferroelectrics 9149

parameter is the quantityχ0, which we take as 450. In BaTiO3, P0 ∼ 0.1 C m−2;
the corresponding switching field (at which polarization reversal takes place) is of order
Ec ∼ P0/χ0ε0 ∼ 200 kV m−1. For the PE medium,χP is constant.

Typical hysteresis behaviour is shown in figures 4 and 5. Figure 4 shows the hysteresis
curve (plot ofq againste′ = χ0e0) for t = −0.3, χ0 = 450 ands0 = 0 when there is only
an FE layer (fP = 0). The upper and lower solid curves correspond to the solutionsp+
(f = 1) andp− (f = 0) respectively, and the vertical dashed lines show the transitions
betweenf = 1 andf = 0 at e0 = eF = ±ec (the left-hand dashed line is obtained withe0

decreasing, and the right hand withe0 increasing, as shown by the arrows).

Figure 4. Hysteresis curves (normalized chargeq against applied fielde′ = e0χ0) for an FE
capacitor, witht = −0.3, χ0 = 450, s0 = 0. The dashed curves indicate the transition regions
(e = ±ec) from f = 1 (upper full curve) tof = 0 (lower full curve).

Figure 5 shows the hysteresis diagram for a finite fractionfP = 10% of PE material
(with χP = 200). Note here the important feature that the polarization reversal regions
in which f changes (dashed lines) do not occur at constante0, despite the fact thateF
is constant here (eF = ±ec): becauseq changes during polarization reversal the fieldeP
in the PE region changes, soe0 must change. Hence, the polarization reversal does not
produce vertical lines on the hysteresis diagram. The type of curve in figure 5 is entirely
typical of measured hysteresis curves in nano-structured ferroelectrics (see for example the
measurements of Milleret al 1990 and Zurcheret al 1995), and is indeed also more typical
of single layer ferroelectrics without a specifically designed PE layer than is figure 4. This
provides support to the accepted notion (reviewed by Tilley 1993) that ferroelectrics often
develop a non-switching dielectric layer near one or both of the electrodes, and we consider
this case in the following section.
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Figure 5. Hysteresis curve for an FE/PE capacitor, withfP = 0.1 andχP = 200. Other
parameters as in figure 4.

5. Model for FE capacitor with non-switching layers

In practice, most thin-film FE capacitors consist of a single FE layer without a PE layer.
Nonetheless, they show hysteresis curves characteristic of structures with a PE layer, like
figures 4 and 5. It is therefore concluded that they contain non-switching FE layers. We
here develop a model that incorporates such layers. The basic structure is shown in figure 6,
in which the layers U and L, adjacent to the upper and lower plates, are assumed to be
non-switching, with polarizations respectively positive and negative. The charges on top
and bottom plates are (q+p0) and (−q+p0) respectively; this ensures that the fieldseU and
eL in the upper and lower layers can be zero whenq = 0, with polarizationspU = p0 and
pL = −p0. The total charges on the two intermediate interfaces are (s0 − p0) at the U/FE
interface, and (−s0 − p0) at the FE/L interface (with overall zero charge on the structure).
The relative fractions of U, FE and L regions arefU , (1− fU − fL) andfL respectively.
The central FE layer is again divided into two domains FE+ and FE−, with f as the fraction
of FE+ domain. The normalized fields in each region are:

U dU = q + p0 eU = q + p0− pU
F+ d+ = q + s+ eF = q + s+ − p+
F− d− = q + s− eF = q + s− − p−
L dL = q − p0 eL = q − p0− pL. (5.1)

The polarizations satisfy the equation

pi(t + p2
i ) = χ0ei for i = U,F± or L. (5.2)
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Figure 6. FE capacitor structure with non-switching Fe layers U and L.fU and fL are the
fractions of the non-switching layers, andf the fraction of the FE+ domain within the switching
FE layer. The charge densities at the interfaces and on the capacitor plates are as shown.

As in section 4, we take the fieldeF in the FE layer as the independent variable, sop±
satisfies

p±(t + p2
±) = χ0eF (5.3)

where the subscript± indicates whether the upper or lower solution is to be used (the third,
intermediate, solution of the cubic equation is unstable).q is found from (4.8) as

q = eF − (s± − p±) = eF − s0+ p+f + p−(1− f ) (5.4)

with s± given by (4.7). This enables the polarizations in the U and L regions to be found
as the solutions of

pU(t + χ0+ p2
U) = χ0(q + p0)

pL(t + χ0+ p2
L) = χ0(q − p0)

(5.5)

with pU > 0 andpL < 0, andp0 =
√−t . The overall field is

e′ = χ0e0 = χ0[fUeU + (1− fL − fU)eF + fLeL]. (5.6)

Under the long-term equilibrium conditions, when all fieldse and the chargeq are zero, the
polarizations are

pU = p+ = p0 pL = p− = −p0. (5.7)

The fieldeL in the upper layer need never exceed the critical fieldec, so this layer is never
forced into a polarization reversal. Ase0 increases,eL reaches a limit just belowec, and the
remainder ofe0 is taken up by the other two layers. Similarly,eF is restricted toeF > −ec.
As with the FE/PE structure, polarization reversal is accomplished by movement of the
domain wall in the switching FE± layer.

Figure 7 shows the hysteresis curve fors0 = 0, χ0 = 450, t = −0.3, fU = fL = 5%.
Note the similarity with figure 4 for the FE/PE capacitor, though the regions in whichf

changes are less linear than in figure 4. Figure 8 shows the same structure, but with the
initial charges0 = 0.2. This produces an asymmetry in the hysteresis, of the type that is
often observed experimentally. Whilst the change is mainly one of shifting the whole loop
down theq-axis by 0.2, there are also changes to the shape of the loop near its extremities.
Asymmetry can also arise iffU 6= fL.
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Figure 7. Hysteresis curve for FE capacitor with non-switching layers of fractionsfU = fL =
5%. χ0 = 450, s0 = 0, t = −0.3. The dashed sections are the regions in which the domain
fraction f changes from 0 to 1.

Figure 8. Hysteresis curve for FE capacitor with non-switching layers. Parameters as for
figure 7, except thats0 = 0.2.
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6. Discussion

We have developed a simple model that explains the basic form of the observed hysteresis
curves for a ferroelectric/paraelectric (FE/PE) capacitor structure, and for an FE structure
that includes non-switching FE layers. The model simply satisfies the electrostatic boundary
conditions, assuming that a layer of compensation charge exists at the interfaces between the
layers. Polarization reversal takes place through the movement of domain walls separating
reversal-phase domains in the switching FE layer. In this model, no energy is associated
with the domain walls: we merely assume that the walls move once the field in one or
other domain reaches the critical value for polarization reversal, so that overall polarization
switching of the structure is effected by domain wall movement. This leads to hysteresis
curves (e.g. figures 5, 7 and 8) that are characteristic of experimentally measured curves. Of
course, the energy associated with domain wall movement is likely to be non-negligible in
real systems, but we would argue that this is a secondary feature of the polarization reversal
process. Although in our model we have included only one type of each domain, the
arguments and the numerical results are unaltered if the sample is split up into many domains.

The existence of compensation charge at the interfaces is a central feature of the model,
as is the assumption that this charge is unable to move across the layers on the time-scale
of a typical measurement, though the charge distribution at the interface must be able to
move from one domain to another within the interface. Without this compensation charge,
the depolarizing fields are so strong that ferroelectric alignment normal to the plane of the
FE layer structure would not be possible. We have not associated any energy (other than
electrostatic energy) with the compensation charge, nor have we assumed a finite thickness
for the charged region; as with the domain wall energy, we expect that such effects will
be secondary refinements to the main effects that we have discussed. We also remark that
although we have only considered one layer each of the various FE and PE regions, the
arguments we have presented are not affected if there are multiple regions: all that matters
is the relative fractions of the various constituents. Although the non-switching layers U
and L have been shown adjacent to the electrodes, the results are not dependent on the
relative placing of the layers.

It is well established that non-switching FE layers exist in thin FE structures, and
we have shown that such layers imply hysteresis curves that are of the form measured
experimentally. Whilst the details of the mechanism by which these are formed are beyond
the scope of this paper, it is worth remarking that the lateral electric fields which cause the
motion of the domains walls will be much greater in the absence of non-switching layers
than in their presence, as can be seen by the abrupt changes inq in figure 4 (no non-
switching layers) as compared to figures 7 and 8. It is likely that such large fields can cause
electrical breakdown, which establishes the compensation charge layers at the interfaces and
stabilizes the U and L non-switching regions. Once the compensation charges have been
formed, probably during initial electrical cycling of the structure, later changes in the charge
distributions are much less dramatic. Nonetheless, slow degradation of the hysteresis loop
with cycling occurs in many thin-film ferroelectric structures; in our model, this must be
associated with the increase in the fractionsfU and fL of the non-switching regions by
vertical motion of the interfaces. Indeed, whenfU + fL = 1 there is no switching region
left, and so the structure ceases to be usable as a ferroelectric memory device; note that
this does not imply that the material is no longer ferroelectric—the compensation charges
merely prevent switching of the polarization.

Finally, it is worth remarking on the analogy between ferromagnets and ferroelectrics.
Hysteresis curves have been studied and understood in ferromagnets for many years, and
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there is a temptation to assume that hysteresis curves in ferroelectrics can be understood on
the same basis. This assumption should be treated with caution for two reasons. First, the
molecular field parameterλ which measures the relative influences of the local coupling
and the demagnetizing order polarising fields is vastly different in the two cases. In the
usual mean field formulation of ferromagnetism, the total fieldB at a site is written as the
sum of an external fieldBext and an internal molecular fieldBint = λM, whereM is the
magnetization in the sample. Ifχ(0) = ∂M/∂Bext is the susceptibility in the absence of the
molecular field, then the renormalized total susceptibility is

χ = ∂M

∂Bext
= χ(0)

1− λχ(0) . (6.1)

In the high-T phase the uncoupled susceptibilityχ(0) normally has the Curie-law form
χ(0) ∼ C/T , whereC is the Curie constant, and soχ can be written as

χ = χ0

t
with χ0 ∼ λ−1. (6.2)

Heret is the reduced temperaturet = (T − TC)/TC andTC = Cλ is the Curie temperature.
Demagnetizing effects due to sample shape and configuration give a contribution to the inter-
nal field1Bint ≈ αM, with α ∼ 1. Typically,λ ∼ 5000 or more in ferromagnets, and since
α � λ the internal molecular field dominates over the demagnetizing effects. The situation
is completely different in a ferroelectric. In our model ferroelectric we have used a suscep-
tibility in the form χ = ∂p/∂e = χ0/t (see equation (3.5)) withχ0 = 450, so the molecular
field parameter isλ = χ−1

0 ∼ 2 × 10−3. Depolarizing effects produce internal fields
1eint ≈ αp with α ∼ 1 as for the demagnetizing effects. However, sinceλ is more than six
orders of magnitude less in a ferroelectric than in a ferromagnet, depolarization effects play
a much more important part in the former and must be included explicitly in working out the
response of a ferroelectric structure, as we have done here. The second crucial distinction
between ferroelectrics and ferromagnets is that free charge exists in ferroelectrics, but has no
analogue in a ferromagnet. This free charge—what we have called ‘compensation charge’—
nullifies to a large extent the depolarizing fields and thereby permits the existence of ferro-
electricity which would otherwise be inhibited by depolarization effects in layered structures.
However, only in the simplest of structures—a single layer FE with metal electrodes whose
hysteresis loop is demonstrated in figure 4—are the depolarization effects precisely com-
pensated to the extent that they can be completely ignored. Otherwise, as this paper has
shown, the interplay between compensation charges and depolarization effects is crucial in
determining the precise form of the hysteresis curves in a layered ferroelectric structure.
The detailed effects then observed have no genuine analogues in ferromagnetic structures.
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